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Abstract

Purpose – One-dimensional pipe network flow analysis can be used in many applications to
satisfactorily solve various engineering problems. The paper aims to focus on this.

Design/methodology/approach – A hybrid nodal method is detailed, which solves the pressure
field prior to the elemental flows, and models both compressible gas and incompressible liquid and gas
flows.

Findings – The results obtained by the algorithm were verified against a number of published
benchmark flow problems. The methodology was found to yield accuracy similar or improved,
compared with that of others, while being applicable to both incompressible liquid and compressible
gas flows. Convergence performance was found to be similar to other hybrid techniques.

Originality/value – All flows are modelled via a single governing equation set. In the case of
incompressible flow, the method is capable of dealing with both constant and variable cross-sectional
area ducts. The latter includes geometrically complex pipes such as sudden expansions.

Keywords Pipes, Gas flow, Liquid flow, Simulation

Paper type Research paper

Nomenclature
A ¼ cross sectional area (m2)
c ¼ flow loss coefficient, c ¼ c(K)
d ¼ external mass flow (kg/s)
D ¼ diameter (m)
E ¼ total number of pipe elements
F ¼ friction factor
H ¼ flow directional change denominator
I ¼ total number of nodes in a pipe

network mesh
J ¼ number of pipe elements surrounding

a specific node
K ¼ flow loss correlation
L ¼ pipe/elemental length (m)
M ¼ Mach number
_m ¼ mass flow (kg/s)
n ¼ normal vector
p ¼ average static pressure (Pa)
Q ¼ elemental volume flow (m3/s)
R ¼ ideal gas constant (m2/(s2 K))
s ¼ initial flow direction indicator
T ¼ temperature (K)

u ¼ pipe/element cross-sectional average
velocity (m/s)

V ¼ total elemental volume (m3)

Greek
a ¼ relaxation parameter
b ¼ group of terms
g ¼ specific heat ratio
d ¼ gas/fluid type selector
1 ¼ convergence parameter
r ¼ pipe/element cross-sectional average

density
w ¼ denominator: group of terms

Supercript
* ¼ last/guessed numerical value
0 ¼ corrected numerical value

Subscript
ag ¼ gas term indictor for equation of state
i ¼ node/vertex point
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j ¼ adjacent node/vertex point to i
f ¼ flow losses
x ¼ Cartesian coordinate aligned with axis

of pipe element
0 ¼ total pressure

dyn ¼ dynamic component
s ¼ static component
a ¼ denominator
PFE ¼ pressure drop-flow equation

1. Introduction
The simulation of flow in pipe networks has found applicability in the design of
natural gas and water distribution or the pipeline transport industry (Osiadacz, 1988;
Potter and Wiggert, 1991). In addition, various other engineering flow problems may
be solved using this 1D approach. For example, the flow of air through complex
geometries may be analysed to first-order accuracy with little effort by using a 1D
simulation to connect different flow paths together. A novel example of such an
application, is the preliminary design of airflow through a gas turbine combustor
chamber (Stuttaford and Rubini, 1996; Pretorius, 2004). In thus, pipe network
simulation holds true potential as an engineering design tool. Ideally such a tool should
be able to deal with both compressible gas and incompressible gas and liquid flows in
variable cross-sectional area ducts. A number of pipe network numerical methods at
present exist viz. nodal, loop and hybrid methods.

The nodal method utilizes the continuity equation to establish a mass balance
at each node of the network, which is solved simultaneously to yield element flows.
The pressure change over elements is provided via a pressure drop-flow
relationship, which follows from the flow momentum equations. The advantage of
nodal methods lies in the fact that the formulation is relatively straightforward to
implement into numerical code, while requiring less storage space than element-based
methods. There is also no need to specify loops or carefully selected initial flows as
with the loop-based method. The nodal approach can further deal with mixed
boundary conditions consisting of either pressure or flow. The main disadvantage of
this method is however the poor convergence characteristic that it poses, as well as its
extreme sensitivity to initial guessed pressure values (Osiadacz, 1988; Potter and
Wiggert, 1991).

The loop method uses the same basic set of equations as the nodal method but with
different boundary conditions (Osiadacz, 1988, 1987). A number of loops, representing
the flow through a network, are however constructed. Kirchoff’s second law, which is
that the sum of the pressure-drops around any loop equals zero, is then applied. The
advantage of this method is that the storage requirement is lower as compared to
the other methods and it further also poses very good convergence characteristics. The
main disadvantage is the necessity to define loops, of which the appropriate choice
(from a numerical point of view) is not necessarily trivial (Osiadacz, 1987).

The hybrid pipe network method (Osiadacz, 1987; Greyvenstein and Laurie, 1994;
Greyvenstein, 2002) combines aspects of the nodal and loop-based techniques, and
such that the advantages of these approaches are inherited. The nodal aspect of the
formulation makes the network definition much easier and yields a sparser matrix,
while the good convergence characteristics of the loop formulation are preserved
(Osiadacz, 1988, 1987). Amongst the hybrid methods, is a technique pioneered by
Greyvenstein and Laurie (1994), which makes use of the SIMPLE pressure correction
technique developed by Patankar (1980). Their formulation is shown to effectively
simulate incompressible flow (Greyvenstein and Laurie, 1994) as well as compressible
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flows at Mach numbers of up to 0.7 (Greyvenstein, 2002). In the aforementioned work,
separate governing equations are however solved for compressible gas and
incompressible liquid flows.

In the interest of the generic applicability of a pipe network modelling tool, it would
however be more advantageous to employ a single continuity and momentum equation
set which describes flows ranging from incompressible to highly compressible.
Networks or even single elements containing both flow types may thereby be solved
effectively. Further, the method employed in existing work to construct the pressure
correction equation (Greyvenstein and Laurie, 1994; Greyvenstein, 2002) requires the
analytical and/or numerical differentiation of a number of terms, making the method
potentially cumbersome to implement into computer code. Finally, nowhere in the
literature are current hybrid approaches applied to model axisymmetric ducts with
discontinuous changes in cross-sectional flow area (sudden expansion or contraction)
via a single pipe element without employing a specialised formulation.

In this paper, a hybrid pipe network method based on the work of Greyvenstein and
Lauries (1994) is proposed. It however employs a single equation set to describe both
steady incompressible as well as highly compressible flows. In addition, the model has
the capability to compute flows through variable area ducts with discontinuous
changes in cross-sectional area in the case of incompressible flow. The differentiation
of flow-related nonlinearities such as flow friction are further dealt with in a
straightforward manner when constructing the pressure correction equation. It will be
shown via the simulation of a number of benchmark problems, that the resulting
methodology yields accurate results in all cases. It will further be shown to offer
improved accuracy as compared to that of others for certain flows, and at no additional
computational cost.

2. Governing equations
The governing equations to be satisfied in a steady isothermal fluid network are the
continuity, pressure drop-flow rate and density equations. The latter is the equation of
state in the case of gasses. The strong form for the continuity equation for 1D flow, as
may be applied to a pipe network, is as follows:

›

›x
ðr uÞ ¼ 0 ð1Þ

where r and u, respectively, denote the cross-sectional average density and velocity at
a point along a 1D pipe element. The momentum equation, in the absence of
gravitational effects, reduces to the following:

›p

›x
þ

›

›x
ðr u 2Þ ¼ j ð2Þ

where p is the element cross-sectional average static pressure, j ¼ u 2cf denotes a
product between the average cross-sectional area velocity u and the drag coefficient cf.
The latter accounts for the effect of flow frictional losses where cf(K) is typically a
function of flow loss correlation (K(u)) which is obtained analytically or from
experimental data.

Densities for both compressible gasses (ideal) and liquids are in this work computed
by utilizing the following single relation:
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ra ¼ dag
pa

RTa
þ ð1 2 dagÞralðTaÞ ð3Þ

where:

dag ¼
0 for liquids

1 for ideal gasses

(

Here, d is the Kronecker delta, a ¼ g denotes gas and in the case of a liquid a ¼ l.
Further, R is the ideal gas constant and T is the temperature. The temperatures are
provided as a boundary condition in this work as thermal energy conservation is not
explicitly solved for.

3. Discretization procedure
In the paragraphs to follow, the governing equations are discretized from partial
differential form to furnish a set of discrete equations. These may then be solved over a
pipe network to compute pressures, flows and densities.

3.1 Mass equation
Mass conservation at a node i is enforced as follows (Greyvenstein and Laurie, 1994):

XJ

j¼1

si; jri; jQi; j ¼ 2di ð4Þ

where i ¼ 1,2,. . . I, with I denoting the total number of nodes in the mesh. In the
above relation, summation is implied over all pipe branches j connected to node i,
while the subscript i, j denotes a branch with local node numbers i and j. Further, Qi, j is
the volume flux in pipe i, j and di is the external mass flow into node i. Finally:

si; j ¼
1 if flow enters the node

21 if the flow exits the node

" #

Equation (4) is to be satisfies at every node in the pipe network.

3.2 Momentum equation
The momentum equation is discretized over the arbitrary 1D element shown in
Figure 1. To achieve this, it is necessary to cast the equation into weak form and obtain
analytical expressions for the resulting area integrals. This is detailed next.

Equation (2) is integrated over the control volume in Figure 1 as follows:

Z
V

›

›x
ð pÞdV þ

Z
V

›

›x
ðr u 2ÞdV ¼ jv ð5Þ
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where V denotes the total volume of the element and:

jv ¼

Z
V

si; jH i; jcfi; j u
2
i; jdV

The latter constitutes an element average source term.
Applying the Divergence Theorem to the volume integrals, the following expression

now results: I
A

pnxdAþ

I
A

ru 2nxdA ¼ jV ð6Þ

where the pipe bounding area A ¼ Ai < Aj < As. Here, the subscripts i and j denote
the two surfaces through flow enters and leaves the pipe while s is the pipe enclosing
surface. Further, nx is the component of the outward pointing surface normal
unit-vector in the direction of the pipe axisymmetric axis.

The first term on the left-hand-side of equation (6) will now be expanded as follows:I
A

pnxdA ¼

I
Aj

pnxdAþ

I
Ai

pnxdAþ

I
As

pnxdA ð7Þ

where the third term on the right-hand-side is in the interim set as:I
As

pnxdA ¼ b

Noting that p is the average static pressure over the element flow cross-section, the
remaining terms on the right-hand-side may be evaluated as:I

A

pnxdA ¼ pjAj 2 piAi þ b ð8Þ

The second term in equation (6) is now similarly evaluated as:I
A

ru 2nxdA ¼ rju
2
j Aj 2 riu

2
i Ai ð9Þ

After substituting equations (8) and (9) into equation (6), an expression for the
momentum equations is obtained:

Figure 1.
Element over which the

discretization takes place

As

Aj

x

Ai
V
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pjAj 2 piAi þ bþ rju
2
j Aj 2 riu

2
i Ai ¼ jV ð10Þ

If we base cf upon Aj, the expression for jV becomes:

jV ¼ si; jH i; jcfi; j u
2
i; jAjLi; j ð11Þ

where si, j is defined as before and Li, j is the element length.
The above semi-discrete equation is not suitable for solution in the current form as

the static pressure across a branch connection (node) with minimal frictional
losses (assumed in this work) is not constant. This is a hindrance as a single pressure
value is calculated at a node. This may however be circumvented by solving for the
total pressure at the nodes instead of the static pressure, as the former is constant
across a branch connection by virtue of Bernoulli’s equation (assuming negligible
change in fluid density over a branch connection).

Following from the above, the total pressure may be written as the sum of the
dynamic and static pressures as:

p0 ¼ pdyn þ ps ð12Þ

where pdyn ¼ ð1=2Þru 2. Substituting the expression for static pressure into
equation (11) results in:

p0 jAj 2 p0 iAi þ bþ
1

2
rju

2
j Aj 2 riu

2
i Ai

� �
¼ jV ð13Þ

Note that the concept of total pressure is implemented in such a way that no
assumption regarding compressibility across an element is made.

We now return to the b-term, which accounts for the change in static pressure over
an element due to change in pipe flow area. From Figure 1 and Bernoulli, we may
obtain the following expression for the pressure from the definition of total pressure for
an incompressible fluid:

pðxÞ ¼ p0 i 2
1

2

r 2
i

rj

Q 2
i

A 2ðxÞ
ð14Þ

where Qi and p0 i are the volume flow and total pressure at node i. Substituting
equation (14) into the expression for b and evaluating the integral over the element
analytically, the following results:

b ¼

I
As

pnxdA ¼ 21 p0 iðAj 2 AiÞ þ
1

2

r2
i

rj
Q2
i

1

Aj

2
1

Ai

� �� �
ð15Þ

Note that equation (15) is zero in the case of a constant area duct. The implication is
that the above-discrete expressions may be applied to both constant and variable cross
sectional area ducts in the case of incompressible flow, and only constant flow area
ducts in the case of compressible flow.
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The following fully discretized expression for the momentum equation now results:

Dp0 i; j ¼ p0 j 2 p0 i ¼ si; jcfi; j u
2
i; j þ

r2
i Q

2
i

2rjAj

1

Aj

2
1

Ai

� �
2

1

2Aj

rjAju
2
j 2 riAiu

2
i

� �
ð16Þ

For incompressible flows, applicability is guaranteed to variable area ducts with
geometrically complex features such as sudden expansions, as no simplifying
assumption has been made in the derivation with regards to the element-wise static
pressure distribution. Equation (16) is however not directly solvable in its present form
as it contains nodal values for quantities such as flow and density, which are not
solved for with the hybrid pipe network approach. As an objective is to solve for the
elemental flow Qi, j, we need to obtain an expression for the elemental and element in
and out flow velocities (ui, j, ui and uj) in terms of the variables solve for.

The elemental velocity ui, j is merely the elemental flow divided by the mean
elemental cross sectional area:

ui; j ¼
Qi; j

Ai; j
ð17Þ

The velocity ua is calculated from Qa in a similar manner where a ¼ {i, j}. Further, Qa

is also not explicitly solved for and must be calculated as a function of Qi, j, which may
be obtained through the conservation of mass-flow over an element. This implies that
the nodal densities ri and rj need to be solved simultaneously with Qa. From mass
conservation, the nodal velocities local to an element i, j are calculated as:

ua ¼
ri; jQi; j

raAa
ð18Þ

where a ¼ {i, j}. However, ra may be a function of ua, which is in turn related to static
pressure at node a. The relation for ra in terms of ua and p0a is given by:

ra ¼
dag

RTa
p0a 2

1

2
rau

2
a

� �
þ ð1 2 dagÞralðTÞ ð19Þ

The elemental density is taken as the linear average of the nodal densities:

ri; j ¼
1

2
ðrj þ riÞ ð20Þ

The above density interpolation expression is second order accurate, which is in-line
with the overall accuracy of the hybrid discretization scheme. Finally, equations (18)
and (19) need to be solved simultaneously via numerical iteration to obtain ra and ua
for a given p0a.

After implementing the above expressions into equation (16), the following results:

Dp0 i; j ¼ si; jH i; jcfi; jQ
2
i; j þ

r2
i; j

2rjAj

1

Aj

2
1

Ai

� �
Q2
i; j 2

r2
i; j

2Aj

1

rjAj

2
1

riAi

� �
Q2
i; j ð21Þ

which is now written in terms of variables which are explicitly solved for. This
equation constitutes the discretized form of the momentum equation and describes
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compressible gas and incompressible gas and liquid steady flows in constant area
ducts as well as incompressible flow in variable area ducts. It is to be satisfied over
each element.

4. Pressure correction methodology
As per Greyvenstein and Laurie (1994), the first step in the solution process is the
construction and solution of a so-called pressure correction matrix. The calculated
pressure correction values are used to compute the corrected pressure values as
follows:

p0 i ¼ ap*0 i þ p00 i ð22Þ

where the superscripts * and 0, respectively, denote the current approximate solution
and the correction. Further, a is the pressure correction relaxation factor. The
construction of an equation for the pressure correction commences by substituting the
following relations for flow and density:

Qi; j ¼ Q*i; j þ Q0
i; j ð23Þ

ri; j ¼ r*i; j þ r0i; j ð24Þ

into the continuity equation (equation (4)) which results in:

XJ

j¼1

si; j r*i; jQ
*
i; j þ r0i; jQ

*
i; j þ r*i; jQ

0
i; j

� �
¼ 2di ð25Þ

Here, the density-flow correction term, r0i; jQ
0
i; j, has been omitted as is becomes

insignificant as the solution process converges (Greyvenstein and Laurie, 1994).
Equations (22) and (25) are coupled via a relationship between the pressure

correction and the flow correction. This is accomplished by differentiating the
discretized pressure drop-flow equation (equation (21)) with respect to the element flow.
Before the equation is differentiated, it is advantageous to rewrite it in the following
form:

p0 j 2 p0 i ¼ Q2
i; j ·wi; j ð26Þ

where:

wi; j ¼ si; jH i; jcfi; j þ
r2
i; j

2rjAj

1

Aj

2
1

Ai

� �
2

r2
i; j

2Aj

1

rjAj

2
1

riAi

� �

Equation (26) is now differentiated with respect to the element flow:

›p0 j

›Qi; j
2

›p0 i

›Qi; j
¼ si; jH i; j2Qi; jwþ si; jH i; jQ

2
i; j

›wi; j

›Qi; j
ð27Þ

Because the partial differential terms ›() on the left-hand-side will become zero as
convergence is reached, they may be replaced by the correction term ()0:
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p00 j
Q0
i; j

2
p00 i
Q0
i; j

¼ si; jH i; j 2Qi; jwþ Q 2
i; j

›w

›Qi; j

� �
ð28Þ

Provided that the Jacobean term ›w=›Qi; j is known, this expression for the
flow-correction in terms of the pressure-correction (which is applicable to
both compressible and incompressible flows) is viewed as simple and easily
implementable into computer code. A further advantage of this approach is that
flow-related nonlinearities such as the cf coefficient are automatically taken in
consideration. This will be shown to have a significant effect on convergence
performance.

To complete the proposed algorithm, ›w=›Qi; j is easily computed numerically to
first order accuracy as follows:

›w

›Qi; j
¼

wðQi; j þ dQi; jÞ2 wðQi; jÞ

dQi; j
ð29Þ

where:

dQi; j ¼ max 1023Qi; j; 1025Q max
i; j

� �
The latter expression keeps dQi, j from becoming zero.

The effect of the order of accuracy of equation (29) on solution accuracy and
convergence characteristics was found to be negligible. The cost of computing the
Jacobean term was also found to be insignificant in terms of the scheme’s overall CPU
cost, as the bulk of the computational effort is expended on inverting the pressure
correction matrix.

Through rearranging the terms of equation (28), an equation for the flow correction
in terms of pressure correction is now established as:

Q 0
i; j ¼

p00 j 2 p00 i

si; jH i; j 2Qi; jwþ Q2
i; jð›w=›Qi; jÞ

� � ð30Þ

The density correction may be obtained via equation (20) as follows:

r0i; j ¼
1

2
ðr0j þ r0iÞ ð31Þ

Finally, the expression for the pressure correction in terms of the flows and the
densities may be found by substituting equations (23), (24), (30) and (31) into equation
(25). The pressure correction values are now solved simultaneously at all nodes in the
network via LU decomposition. The flows and densities may subsequently
be calculated by means of equations (22), (30), (23), (31) and (24). Figure 2 shows the
numerical solution procedure diagrammatically.

5. Convergence and stability
For the nodal method to yield accurate results, two convergence parameters are
employed (Greyvenstein and Laurie, 1994). The first one verifies the extent of
convergence of the continuity equation (equation (4)) and the other that of the pressure
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drop-flow rate equation (equation (21)). The convergence parameter for the former is
defined as:

1Continuity ¼

PJ
j¼1ðsi; jri; jQi; jÞ þ di

��� ���
maxPI

i¼1

PJ
j¼1jsi; jri; jQi; jji

� �
=E

� � ð32Þ

where max is the maximum value in the network and E the total number of
elements. The convergence parameter for the pressure drop-flow rate equation is
defined as:

1Pressure drop ¼
XE
e¼1

DpPFE 2 DpNodal

DpPFE

����
���� ð33Þ

Figure 2.
Numerical computational
scheme

STEP 3: Solve Cont. Eq. 25:

• Calc. pressure corrections (p′)

Update:

• p* = p

STEP 2: Solve Momentum Eq. 21:

• Calc. guessed flows (Q*)
• Calc. guessed densities (r*)

STEP 4: Correct flow properties

• Calc. corrected pressure (p)

Convergence?

STEP1: Guess
• Initial pressure field (p*)

STOP

START
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where DpPFE is the total pressure drop across an element and DpNodal is the difference
in total pressure between the two nodes linked to the element. Convergence to
engineering accuracy is established when 1 , 1024.

6. Numerical tests and discussion
The developed numerical procedure is tested against three problems. The first two are
compressible flow systems used by Greyvenstein and Laurie (1994) and Greyvenstein
(2002). These problems were selected due to the latter papers employing a similar
numerical scheme. The third test case involves the incompressible liquid flow through
a variable cross-sectional duct viz. a sudden expansion.

6.1 Compressed air network
Greyvenstein and Laurie (1994) published a compressed air network example in their
paper to demonstrate the performance of their method. The developed algorithm will
now be used to analyse this network in order to verify accuracy. Figure 3 shows the
layout of the network with boundary conditions. The element-related data may be
found in Greyvenstein and Laurie (1994).

The boundary conditions to this network are inlet or supply pressures of 600 kPa,
while the outlet or discharge pressures are set equal to 300 kPa. The supply pressures
are applied to nodes one and 14, and the discharge pressures are applied to all nodes
with only one connecting element. The friction factor is initially fixed to f ¼ 0.03 as per

Figure 3.
Compressed air network

7 9

5 7

6 10
6 8 8

4

1 1 2 2 3 3 4 9 11 11 13 12 14

26 27 28 10

27 25 26 4 28 12 13

24
21 21 19 17 15

23
15 14 16

22 20 16

25 24 22 18 19

23 17
29 18

29 20
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the aforementioned paper. The temperature field has been kept constant at 158C with
no heat addition or subtraction. The relaxation factor was set to 1.0.

The solved pressures and flows are shown in Table I (constant friction network) and
compare well with the results of Greyvenstein and Laurie. The convergence history of
the solution process is shown in Figure 4. The initial residual is different from that of
the other authors which is thought to be due to different initial guessed values
employed. In this work guessed nodal pressures were used, the values of which were
chosen just below the highest specified pressure in the network (automatically
calculated by the solver). Convergence to engineering accuracy (log(1p) ¼ 24) was
however reached within eight iterations, which is similar to that of the other authors.
The proposed formulation therefore offers similar accuracy and performance.

In real pipes, friction is however a function of the flow rate and not fixed as previously
simulated. Therefore, the analysis of the same compressed air pipe network was repeated
with friction values as a function of the flow f(Q) through the network. This analysis was
also used to evaluate the effect on convergence of taking the friction factor as a function of

Constant friction network ( f ¼ 0.03) Variable friction network
Published

(Patankar, 1980) This work This work

No.
Mass flow

(kg/s)
Pressure

(kPa)
Mass flow

(kg/s)
Pressure

(kPa)
Mass flow

(kg/s)
Pressure

(kPa) f

1 0.01646 600.00 0.01645 600.00 0.03109 600.00 0.008
2 0.00803 521.51 0.00803 521.51 0.01517 529.37 0.009
3 0.00360 411.34 0.00360 411.37 0.00663 419.93 0.010
4 0.00338 300.00 0.00337 300.00 0.00610 300.00 0.009
5 0.00178 385.50 0.00178 385.53 0.00328 390.66 0.011
6 0.00159 320.57 0.00159 320.58 0.00282 324.93 0.011
7 0.00080 300.00 0.00080 300.00 0.00141 300.00 0.013
8 0.00080 304.23 0.00080 304.23 0.00141 305.91 0.013
9 20.00360 300.00 20.00360 300.00 20.00663 300.00 0.010

10 0.00444 300.00 0.00443 300.00 0.00855 300.00 0.009
11 20.00803 411.34 20.00803 411.37 20.01517 419.93 0.009
12 0.01646 300.00 0.01645 300.00 0.03109 300.00 0.008
13 0.00843 521.51 0.00842 521.51 0.01592 529.37 0.008
14 0.00413 600.00 0.00413 600.00 0.00802 600.00 0.009
15 20.00429 398.49 20.00429 398.51 20.00790 408.65 0.010
16 0.00280 300.00 0.00280 300.00 0.00513 300.00 0.010
17 0.00140 359.77 0.00140 359.78 0.00256 366.92 0.012
18 0.00140 312.86 0.00140 312.87 0.00256 316.43 0.012
19 20.00149 300.00 20.00149 300.00 20.00277 300.00 0.013
20 0.00299 300.00 0.00299 300.00 0.00553 300.00 0.010
21 0.00149 354.80 0.00149 354.82 0.00277 359.86 0.013
22 0.00280 300.00 0.00280 300.00 0.00513 300.00 0.010
23 0.00140 359.77 0.00140 359.78 0.00256 366.92 0.012
24 0.00429 312.86 0.00429 312.87 0.00790 316.43 0.010
25 0.00413 300.00 0.00413 300.00 0.00802 300.00 0.009
26 0.00843 398.49 0.00842 398.51 0.01592 408.65 0.008
27 0.00444 300.00 0.00443 300.00 0.00855 300.00 0.009
28 0.00382 300.00 0.00382 300.00 0.00715 300.00 0.009
29 0.00140 300.00 0.00140 300.00 0.00256 300.00 0.012

Table I.
Results of the simulation
package for the
compressed air network
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the flow ( f(Q)) when constructing the pressure correction matrix. The surface roughness
was set to e ¼ 0.001 mm for all the pipes, which corresponds to that of drawn tubing, and
the Colebrook (1939) correlation employed to relate flow rate to frictional losses. All the
other properties and conditions were as per the previous analysis.

For the first simulation in which the friction f was kept constant when constructing
the pressure correction equation (df/dQ ¼ 0), the relaxation factor was kept at 1.0 and
convergence to engineering accuracy was reached in 11 iterations as shown in Figure 4.
The simulation was then repeated, and this time the friction factor was taken as a
function of the flow when constructing the pressure correction matrix (df/dQ – 0).
Convergence was now reached in seven iterations. Note that the solved pressures and
flows for both construction methodologies were identical and is given in Table I.

In the light of the above, it can be concluded that the proposed methodology offers
similar performance compared to that of the other hybrid formulation in terms of both
accuracy and convergence characteristics. It is also demonstrated that all types of
flow-related nonlinearities should be taken into consideration when constructing the
pressure correction matrix as this may have a significant effect on convergence. The
proposed methodology facilitates this in a natural manner.

6.2 Isothermal steady-state compressible flow through a 100m long pipeline
As noted above, the steady-state compressible flow benchmark case employed in
Greyvenstein (2002) refers. This test case involves a 100 m long pipeline with a
diameter of 0.5 m. Helium flows through the pipeline with a total outlet pressure of
200 kPa and an inlet temperature of 300 K. The friction factor is assumed to be constant
at f ¼ 0.02. The results of Greyvenstein, as well as an “analytical” solution obtained via
a fourth order Runga Kutta numerical integration procedure of the following equation
set (Zucrow and Hoffman, 1976), will be used for validation purposes:

dM

M
¼

ð1 þ 0:5ðg2 1ÞM 2Þ

1 2M 2

gM 2

2

fdx

D

� �
þ

ð1 þ gM 2Þ

2

dT

T

� �
ð34Þ

where M and g are respectfully Mach number and specific heat ratio.

Figure 4.
Convergence plots for the

compressed air network
simulation
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The additional flow properties may be obtained from the following formulations
(Zucrow and Hoffman, 1976):

_m ¼ ApM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

RT
1 þ

g2 1

2
M 2

� �s
ð35Þ

P

p
¼ 1 þ

g2 1

2
M 2

� �g=ðg21Þ

ð36Þ

T

t
¼ 1 þ

g2 1

2
M 2

� �
ð37Þ

where the properties in uppercase refers to the stagnation condition and in lowercase to
the static condition.

The performance of the developed numerical method was evaluated by comparing
predicted flows and the required number of elements to that of the others. In this work
we employ ten elements to discretize the pipeline, as opposed to the 20 elements used
by the other author. The inlet and outlet total pressure ratios obtained via the various
algorithms as a function of the outlet Mach number is shown in Figure 5. The
described method therefore furnished similar results as compared to the other author.
This deems the equation set employed in this work as more accurate, as half the
number of elements are required.

Table II documents the convergence statistics for different relaxation factor values
and outlet Mach numbers for this test case. It is clear that in general, the lower the
relaxation factor the more stable the method, however, the number of required
iterations increases dramatically (more than twice that of the highest relaxation factor
in almost all the cases). A reasonable trade-off between stability of the method and the
cost of computation was found to be a relaxation factor of 1.0.

Figure 5.
Inlet to outlet pressure
ratio as a function of outlet
Mach number for steady
isothermal flow in a 100 m
long pipe line
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6.3 Flow through a sudden expansion
The final test case is aimed at demonstrating the developed modelling technology in
terms of capability to, in addition to accurately describing compressible flow, simulate
incompressible flow with the added complexity of a discontinuously varying duct cross
section. For this purpose, the sudden expansion incompressible flow problem
described by White (1986) was modelled. A schematic of the test case is shown in
Figure 6.

As shown, two reservoirs are connected by cast-iron pipes of varying diameters,
which are joined abruptly, with sharp-edged entrance and exit. Including minor losses,
the water flow rate is to be calculated if the difference in water surface height between
two reservoirs results in a pressure difference of 134.5 kPa.

The following data for the pipes, entrance and exit were employed:
. Surface roughness ¼ 0.04572 mm;
. Entrance loss coefficient ¼ 0.5;
. Exit loss coefficient ¼ 1;
. Lengths both ¼ 6.096 m; and
. Pipe diameters ¼ da ¼ 0.0254 m and db ¼ 0.0508 m.

Figure 7 shows how the problem was modelled via the developed simulation package
where:

Relaxation factor
M2 0.5 0.8 1 1.2

0.1 16 9 7 Unstable
0.2 18 10 7 7
0.3 20 12 9 6
0.4 22 13 10 8
0.5 23 14 11 9
0.6 28 18 13 11
0.7 32 19 14 12

Table II.
Number of required

iterations of the proposed
pipe network method for
different Mach numbers

and relaxation factors for
the isothermal pipeline

Figure 6.
Sudden expansion

problem

1

Pipe A
L = 6.096m
D = 0.0254m

Pipe B
L = 6.096m
D = 0.0508m
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. Element 1 ¼ entrance

. Element 2 ¼ pipe A

. Element 3 ¼ sudden expansion

. Element 4 ¼ pipe B

. Element 5 ¼ exit.

The flow predicted by the proposed method was 0.003262 m3/s, which is within
3 percent of the published value (White, 1986). This result was obtained within 15
iterations as shown in the convergence plot (Figure 8) with a relaxation factor of 0.5.
The capability of the proposed scheme to model incompressible flow through ducts
with discontinuous varying cross-sections is therefore demonstrated.

7. Conclusion
A single equation set methodology for modelling both compressible gas and
incompressible gas and liquid flow in pipe networks is proposed. In the latter case, the
scheme is capable of modelling flow in ducts with discontinuously varying
cross-sections. This model was found to yield results of similar accuracy as
compared to that of others. In the case of a compressible flow problem, fewer elements
were required as compared to recent work by others. It can therefore be concluded that
this single equation set network model holds potential for solving a number of
problems involving both gas and liquid flows, accurately and efficiently.

Figure 7.
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Figure 8.
Convergence plot for the
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